Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120286, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354613

RESUMO

The threat of bioterrorism has spurred research on the decontamination and containment of different agents. Anthrax [causative agent Bacillus anthracis (Ba)] is a disease that can lead to severe infections within human and animals, particularly when inhaled. This research investigated the use of spore-contaminated simulated runoff events into stormwater control measures (SCMs), which are designed to retain and improve the quality of runoff and may have the potential to filter and contain the spores. In this study, the effectiveness of a bioretention cell (BRC) and high flow media filter (HFMF) in Huron, Ohio, were evaluated for removal of Bacillus globigii (Bg) spores (a harmless cognate of Ba). Three 4-8 mm simulated runoff events were created for each SCM using a fire hydrant and Bg spores were injected into the runoff upstream of the SCM inlets. The BRC significantly (p < 0.001) outperformed the HFMF in reducing Bg concentrations and loads, with an average load reduction of 1.9 log (∼99% reduction) compared to 0.4 (∼60% reduction), respectively. A probable critical design factor leading to these differences was the infiltration rate of the media and subsequent retention time within the filters, which was supported by similar disparities in suspended solids reductions. Differences in spore removal may also have been due to particle size distribution of the HFMF, which was more gravelly than the bioretention cell. At 3 and 6 months after the-simulated runoff tests, soil samples taken from both SCMs, yielding detectable Bg spores within the top 15 cm of media, with increased spore concentrations where ponding occurred for longer durations during the tests. This suggests that forebays and areas near inlets may be hotspots for spore cleanup in a real-world bioterrorism incident.


Assuntos
Bacillus anthracis , Bacillus , Animais , Humanos , Esporos Bacterianos , Bacillus subtilis
2.
J Hazard Mater ; 458: 131747, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454488

RESUMO

To assist in emergency preparedness for a biological agent terrorist attack or accidental pathogen release, potential contaminant levels and migration pathways of spores spread by urban stormwater were evaluated using a Storm Water Management Model (SWMM) of U.S. Coast Guard Base Elizabeth City, North Carolina. The high temporal-spatial resolution SWMM model was built using spore concentrations in stormwater runoff from asphalt, grass, and concrete collected from a point-scale field study. The subsequent modeled contamination scenarios included a notional plume release and point releases mimicking the field study under three rainfall conditions. The rainfall scenarios included a 6-hour natural rainfall event on Dec. 8, 2021 and two design storms (2-year and 100-year events). The observed spore concentrations from asphalt and concrete from the actual field experiment were applied to calibrate the washoff parameters in the SWMM model, using an exponential washoff function. The calibrated washoff coefficient (c1) and exponent (c2) were 0.01 and 1.00 for asphalt, 0.05 and 1.45 for grass, and 2.45 and 1.00 for concrete, respectively. The calibrated SWMM model simulated spore concentrations in runoff at times and magnitudes similar to the field study data. In the point release modeled scenario, the concrete surface generated 55.6% higher average spore concentrations than asphalt. Similarly, in the field experiment, a 175% (p < 0.05) higher average spore concentration in surface runoff was observed from concrete than from asphalt. This study demonstrates how SWMM may be used to evaluate spore washoff from urban surfaces under different precipitation amounts, intensities, and durations, and how visualized spatial migration pathways in stormwater runoff may be used for emergency planning and remediation.


Assuntos
Poluentes Químicos da Água , Água , Chuva , Poluentes Químicos da Água/análise , Cidades , Poaceae , Movimentos da Água
3.
Sci Total Environ ; 897: 165307, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37414183

RESUMO

This study examined the washoff of Bacillus globigii (Bg) spores from concrete, asphalt, and grass surfaces by stormwater. Bg is a nonpathogenic surrogate for Bacillus anthracis, which is a biological select agent. Areas (2.74 m × 7.62 m) of concrete, grass, and asphalt were inoculated twice at the field site during the study. Spore concentrations were measured in runoff water after seven rainfall events (1.2-65.4 mm) and complimentary watershed data were collected for soil moisture, depth of water in collection troughs, and rainfall using custom-built telemetry units. An average surface loading of 107.79 Bg spores/m2 resulted in peak spore concentrations in runoff water of 102, 260, and 4.1 CFU/mL from asphalt, concrete, and grass surfaces, respectively. Spore concentrations in the stormwater runoff were greatly reduced by the third rain event after both inoculations, but still detectable in some samples. When initial rainfall events occurred longer after the initial inoculation, the spore concentrations (both peak and average) in the runoff were diminished. The study also compared rainfall data from 4 tipping bucket rain gauges and a laser disdrometer and found they performed similarly for values of total rainfall accumulation while the laser disdrometer provided additional information (total storm kinetic energy) useful in comparing the seven different rain events. The soil moisture probes are recommended for assistance in predicting when to sample sites with intermittent runoff. Sampling trough level readings were critical to understanding the dilution factor of the storm event and the age of the sample collected. Collectively the spore and watershed data are useful for emergency responders faced with remediation decisions after a biological agent incident as the results provide insight into what equipment to deploy and that spores may persist in runoff water at quantifiable levels for months. The spore measurements are also a novel dataset for stormwater model parameterization for biological contamination of urban watersheds.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Chuva , Água , Movimentos da Água , Solo , Monitoramento Ambiental
4.
J Appl Microbiol ; 132(4): 2773-2780, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34878661

RESUMO

AIMS: The goal of this study was to measure the removal efficacy of Bacillus atrophaeus spores from a parking lot using spray-based washing methods (a pressure washer and a garden hose) and wash aids. B. atrophaeus is a commonly used nonpathogenic surrogate for B. anthracis, the causative agent of anthrax and a deadly bioterrorism agent that would cause major disruptions and damage to public health should it be disseminated over an urban area. METHODS AND RESULTS: Five wash aids (1 mM sodium chloride, an Instant Ocean® seawater solution, 0.01% Tween 20, 0.01% sodium dodecyl sulfate, and unamended tap water) were used along with two different spray sequences in this study. Across all treatment conditions, 3.7-6.4 log10  colony forming unit were recovered in the runoff water, and 0.15%-23% of spores were removed from the surface of the parking lot. CONCLUSIONS: Pressure washing removed more spores than the garden hose, and for both types of washing methods, the first pass removed more spores than the subsequent passes. The Instant Ocean and Tween 20 wash aids were found to significantly increase the percentage of spore removal when using the pressure washer, but the overall increase was only 1%-2% compared to the tap water alone. SIGNIFICANCE AND IMPACT OF STUDY: This study provides public officials and emergency responders with baseline spore physical removal information for situations where a corrosive disinfectant might have a negative impact on the environment and washing is being considered as an alternative remediation approach.


Assuntos
Antraz , Bacillus anthracis , Bacillus , Humanos , Hidrocarbonetos , Esporos Bacterianos
5.
AWWA Water Sci ; 3(5): 1-23, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34938982

RESUMO

Per- and polyfluoroalkyl substances (PFAS), which are present in many waters, have detrimental impacts on human health and the environment. Reverse osmosis (RO) and nanofiltration (NF) have shown excellent PFAS separation performance in water treatment; however, these membrane systems do not destroy PFAS but produce concentrated residual streams that need to be managed. Complete destruction of PFAS in RO and NF concentrate streams is ideal, but long-term sequestration strategies are also employed. Because no single technology is adequate for all situations, a range of processes are reviewed here that hold promise as components of treatment schemes for PFAS-laden membrane system concentrates. Attention is also given to relevant concentration processes because it is beneficial to reduce concentrate volume prior to PFAS destruction or sequestration. Given the costs and challenges of managing PFAS in membrane concentrates, it is critical to evaluate both established and emerging technologies in selecting processes for immediate use and continued research.

6.
Urban Water J ; 19(2): 130-140, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35185440

RESUMO

This paper presents a case study demonstrating the process used to develop an overland flow model of radionuclide transport following an aerosol deposition from a hypothetical radiological dispersal device explosion. The process included the integration of digital elevation, building, and land cover information with hydrologic information from a calibrated Stormwater Management Model (SWMM) model. The overland flow model was used to explore the impact of washoff parameter selection and different storm events on radionuclide transport in surface flow. The range of washoff parameters used in the literature resulted in over a 7 times difference in radionuclide washoff, from a small surface removal to nearly full removal. The overland flow model illuminated the primary pathways of contaminant transport, a potentially useful tool that informs emergency response, planning, and remediation activities.

7.
Water Resour Res ; 57(3): 1-11, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35350225

RESUMO

After a biological terrorist attack, understanding the migration of agents such as Bacillus anthracis is critical due to their deadly nature. This is important in urban settings with higher likelihood of human exposure and a large fraction of impervious materials contributing to pollutant washoff. The study goals were to understand the removal of spores from urban surfaces under different rainfall conditions, to compare washoff of two B. anthracis surrogate spores, and to compare two empirical fits for the first flush of spores from small areas. Concrete and asphalt were inoculated with either Bacillus atrophaeus or Bacillus thuringiensis kurstaki spores and exposed to simulated rainfall. The study assessed goodness-of-fit for the Storm Water Management Model (SWMM)'s exponential washoff function compared to an alternative two-stage exponential function. The highest average washoff of spores was 15% for an hour-long experiment. Spore washoff was not significantly different for the two spore types, but there were significant differences in washoff from asphalt versus concrete with more occurring from asphalt. Average kinetic energy of the storm event impacted washoff from asphalt, but not concrete. The two-stage function had a better goodness-of-fit than the SWMM exponential function. As such, emergency responders should be aware that the spread of contamination is impacted by the droplet characteristics of the storm event and the surface material type in the contaminated area; modelers should be aware that different data-fitting approaches may be more appropriate for first-flush calculations of small washoff areas than those used for continuous long-term simulation of large subcatchments.

8.
J Environ Manage ; 280: 111838, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360257

RESUMO

This paper presents a Stormwater Emergency Response Framework (SERF) for use in the containment and treatment of stormwater runoff following a hazardous material release. The framework consists of four high level process steps and a decision tree. These resources are intended to assist stormwater managers in fulfilling their emergency response responsibilities within the United States' National Incident Management System. Robust hydraulic and watershed modeling may take weeks to months to develop for a contaminated site, whereas decisions made in the initial hours can have a significant impact on limiting contamination spread. Many web resources are publicly available to assist responders in visualizing stormwater runoff flow paths. A case study provided in this paper also demonstrates how simple calculations may be utilized to estimate peak flows and storage volumes necessary to respond to precipitation events immediately. These calculations are useful for decision makers' allocation of containment and treatment resources within the impacted area. This includes where to deploy available resources to minimize contamination risks to downstream communities and where supplemental resources from outside partners are urgently needed.


Assuntos
Chuva , Estados Unidos
9.
J Contam Hydrol ; 235: 103707, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32916588

RESUMO

Development of numerical models to predict stormwater-mediated transport of pathogenic spores in the environment depends on an understanding of adhesion forces that dictate detachment after rain events. Zeta potential values were measured in the laboratory for Bacillus globigii and Bacillus thuringiensis kurstaki, two common surrogates used to represent Bacillus anthracis, in synthetic baseline ultrapure water and laboratory prepared stormwater. Zeta potential curves were also determined for materials representative of urban infrastructure (concrete and asphalt). These data were used to predict the interaction energy between the spores and urban materials using Derjaguin-Landau-Verwey-Overbeek (DLVO) modeling. B. globigii and B. thuringiensis kurstaki sourced from Yakibou Inc., were found to have similar zeta potential curves, whereas spores sourced from the U.S. military's Dugway laboratory were found to diverge. In the ultrapure water, the modeling results use the laboratory data to demonstrate that the energy barriers between the spores and the urban materials were tunable through compression of the electrical double layer of the spores via changes of ionic strength and pH of the water. In the runoff water, charge neutralization dominated surface processes. The cations, metals, and natural organic matter (NOM) in the runoff water contributed to equalizing the zeta potential values for Dugway B. globigii and B. thuringiensis kurstaki, and drastically modified the surface of the concrete and asphalt. All DLVO energy curves using the runoff water were repulsive. The highest energy barrier predicted in this study was for Dugway B. globigii spores interacting with a concrete surface in runoff water, suggesting that this would be the most challenging combination to detach through water-based decontamination.


Assuntos
Bacillus anthracis , Bacillus , Laboratórios , Esporos Bacterianos
10.
Environ Monit Assess ; 192(7): 455, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32583176

RESUMO

Bacillus anthracis, the causative agent for anthrax, is a dangerous pathogen to humans and has a history as a bioterrorism agent. While sampling methods have been developed and evaluated for characterizing and clearing contaminated indoor sites, the performance of these sampling methods is unknown for use in outdoor environments. This paper presents surface sampling data for Bacillus atrophaeus spores, a surrogate for B. anthracis, from a 210-day outdoor study that evaluated the detection and recovery of spores using five different sampling methods as follows: sponge sticks, 37-mm vacuum filter cassettes, residential wet vacuums, robotic floor cleaners, and grab samples of soil, leaves, and grass. The spores were applied by spraying a liquid suspension onto the surfaces. Both asphalt and concrete surfaces were sampled by all the surface sampling methods, excluding grab sampling. Stainless steel coupons placed outdoors were additionally sampled using sponge sticks. Sampling methods differed in their ability to collect detectable spores over the duration of the study. The 37-mm vacuums and sponge sticks consistently detected spores on asphalt through day 37 and robots through day 99. The wet vacuums detected spores on asphalt for days 1 and 4, but not again until day 210. On concrete, all samplers detected spores until day 210 except for sponge stick samplers that detected spores only up until the day 99 time point. For all sampling methods, spore recoveries were higher from concrete than from asphalt surfaces. There was no statistically significant difference in recoveries of sponge sticks and 37-mm vacuums from either asphalt or concrete surfaces. Processing of grab samples was challenging due to non-target background microorganisms resulting in high detection limits for the samples.


Assuntos
Bacillus anthracis , Bacillus , Monitoramento Ambiental , Humanos , Esporos Bacterianos
11.
Sci Total Environ ; 622-623: 626-634, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29223086

RESUMO

Compromised water quality risks public health, which becomes particularly acute in economically marginalized communities. Although the majority of the clean-water-deprived population resides in Sub-Saharan Africa and Asia, a significant portion (32 million) lives in Meso- and Latin-America. Oaxaca is one of the marginalized southern states of Mexico, which has experienced high morbidity from infectious diseases and also has suffered from a high rate of infant mortality. However, there has been a paucity of reports on the status of water quality of culturally diverse rural Oaxaca. This study follows community-based participatory research methods to address the data gap by reporting on water quality (chemical and microbiological) and by exploring social realities and water use practices within and among communities. Surveys and water quality analyses were conducted on 73 households in three rural communities, which were selected based on the choice of water sources (i.e., river water, groundwater, and spring water). Statistically significant variations among communities were observed including the sanitation infrastructure (p-value 0.001), public perception on water quality (p-value 0.007), and actual microbiological quality of water (p-value 0.001). Results indicate a high prevalence of diarrheal diseases, a desire to improve water quality and reduce the cost of water, and a need for education on water quality and health in all the surveyed communities. The complexities among the three studied communities highlight the need for undertaking appropriate policies and water treatment solutions.

12.
Sci Total Environ ; 566-567: 368-377, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27232964

RESUMO

This research examined how variations in synthesis methods of silver nanoparticles affect both the release of silver from ceramic water filters (CWFs) and disinfection efficacy. The silver nanoparticles used were stabilized by four different molecules: citrate, polyvinylpyrrolidone, branched polyethylenimine, and casein. A multilevel statistical model was built to quantify if there was a significant difference in: a) extent of silver lost, b) initial amount of silver lost, c) silver lost for water of different quality, and d) total coliform removal. Experiments were performed on location at Pure Home Water, a CWF factory in Tamale, Ghana using stored rainwater and dugout water (a local surface water). The results indicated that using dugout vs. rainwater significantly affects the initial (p-value 0.0015) and sustained (p-value 0.0124) loss of silver, but that silver type does not have a significant effect. On average, dugout water removed 37.5µg/L more initial silver and had 1.1µg/L more silver in the filtrate than rainwater. Initially, filters achieved 1.9 log reduction values (LRVs) on average, but among different silver and water types this varied by as much as 2.5 LRV units. Overall, bacterial removal effectiveness was more challenging to evaluate, but some data suggest that the branched polyethylenimine silver nanoparticles provided improved initial bacterial removal over filters which were not painted with silver nanoparticles (p-value 0.038).


Assuntos
Desinfetantes/química , Desinfecção/métodos , Excipientes/química , Nanopartículas Metálicas/química , Prata/química , Purificação da Água/métodos , Caseínas/química , Cerâmica/química , Ácido Cítrico/química , Filtração/métodos , Gana , Modelos Teóricos , Polietilenoimina/química , Povidona/química
13.
Langmuir ; 32(7): 1723-31, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26797148

RESUMO

This article examines the influence of three common stabilizing agents (citrate, poly(vinylpyrrolidone) (PVP), and branched poly(ethylenimine) (BPEI)) on the attachment affinity of silver nanoparticles to ceramic water filters. Citrate-stabilized silver nanoparticles were found to have the highest attachment affinity (under conditions in which the surface potential was of opposite sign to the filter). This work demonstrates that the interaction between the electrical double layers plays a critical role in the attachment of nanoparticles to flat surfaces and, in particular, that predictions of double-layer interactions are sensitive to boundary condition assumptions (constant charge vs constant potential). The experimental deposition results can be explained when using different boundary condition assumptions for different stabilizing molecules but not when the same assumption was assumed for all three types of particles. The integration of steric interactions can also explain the experimental deposition results. Particle size was demonstrated to have an effect on the predicted deposition for BPEI-stabilized particles but not for PVP.

14.
Prog Polym Sci ; 81: 209-237, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29937599

RESUMO

Conventional water resources in many regions are insufficient to meet the water needs of growing populations, thus reuse is gaining acceptance as a method of water supply augmentation. Recent advancements in membrane technology have allowed for the reclamation of municipal wastewater for the production of drinking water, i.e., potable reuse. Although public perception can be a challenge, potable reuse is often the least energy-intensive method of providing additional drinking water to water stressed regions. A variety of membranes have been developed that can remove water contaminants ranging from particles and pathogens to dissolved organic compounds and salts. Typically, potable reuse treatment plants use polymeric membranes for microfiltration or ultrafiltration in conjunction with reverse osmosis and, in some cases, nanofiltration. Membrane properties, including pore size, wettability, surface charge, roughness, thermal resistance, chemical stability, permeability, thickness and mechanical strength, vary between membranes and applications. Advancements in membrane technology including new membrane materials, coatings, and manufacturing methods, as well as emerging membrane processes such as membrane bioreactors, electrodialysis, and forward osmosis have been developed to improve selectivity, energy consumption, fouling resistance, and/or capital cost. The purpose of this review is to provide a comprehensive summary of the role of polymeric membranes in the treatment of wastewater to potable water quality and highlight recent advancements in separation processes. Beyond membranes themselves, this review covers the background and history of potable reuse, and commonly used potable reuse process chains, pretreatment steps, and advanced oxidation processes. Key trends in membrane technology include novel configurations, materials and fouling prevention techniques. Challenges still facing membrane-based potable reuse applications, including chemical and biological contaminant removal, membrane fouling, and public perception, are highlighted as areas in need of further research and development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...